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A model potential which is derived from second order pseudopotential perturbation theory with the transferable electron-ion 
potential of Fiolhais and co-workers which was originally developed for the solid state is used for the comparative study of 
electrical resistivity of for liquid K, Rb, and Cs metals and liquid K-Cs and K-Rb alloys. In the present study electrical 
resistivity of liquid K, Rb, and Cs metals and liquid K-Cs and K-Rb alloys have been calculated using Ziman’s formula, and 
modified Ziman’s formula suggested by Ferraz-March and used by Khajil and Tomak (self consistent approximation). 
Previously no one has reported such comparative study using that pseudopotentials. In the electrical resistivity calculation 
we have used structure factor derived from the solution of Ornstein–Zernike equation with Rogers-Young closure. From 
present investigation it is found that self consistent formulation results are better than that of Ziman’s formula. A successful 
application is evidence that our potential can predict physical properties of K-Cs and K-Rb alloys as well as K, Rb and Cs 
metals. 
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1. Introduction 
 
A number of calculations of the electrical resistivity 

using structure factor from various experiments or 
different forms of bare ion potential and dielectric function 
of liquid metals and alloys have been reported.  Ziman 
formula [1] is one of the most widely used in the 
calculation of liquid metal resistivities and it was extended 
to liquid binary alloys by Faber and Ziman [2]. This 
expression involves a finite integral over the 

product )qk2()q(w)q(Sq F

23 -q . The unit step function 

q(2kF-q) cuts off the integration at 2kF corresponding to a 
perfect sharp Fermi surface. Implicitly it is assumed that 
only those electrons whose wave vectors q lie on the Fermi 
surface are effective for the scattering. But it faces 
difficulties when applied to systems with strong electron-
ion interaction and thus, strong, multiple electron 
scattering. The electron has a finite mean-free-path in such 
systems. The finite mean free path corresponds to a finite 
uncertainty in the electron momentum. Thus the Fermi 
surface is not perfectly sharp but it is blurred. One of the 
attempts to take into account this blurring has been made 
by Ferraz and March [3]. They have modified Ziman 
Formula. The formula supposed by Ferraz-March takes the 
mean-free-path of electron into account of calculation of 
resistivity. In the present work we have calculated 
electrical resistivities using the modified Ziman formula 
suggested by Ferraz-March for K, Rb and Cs liquid metals 
and K0.5Rb0.5, and K0.5Cs0.5, liquid metal alloys near the 
melting point. We have used the individual version of 

local pseudopotential proposed by Fiolhais and coworkers 
[4-5] which was developed for solid state and is 
transferable to the liquid metals and alloys [6-13] as 
interaction potentials. The static structure factor S(q) is 
determined from the solution of Ornstein-Zernike equation 
with Rogers-Young closure [14]. To the best of our 
knowledge, previously no one has reported such a study to 
investigate electrical resistivity using structure factor from 
this transferable pseudopotential and this closure.  We 
have also calculated the electrical resistivities of the 
system studied present work using Ziman formula. We 
have compared our calculations with theoretical results 
obtained from modified Ziman formula suggested by 
Ferraz and March and Ziman formulas and experimental 
data. 

 
 
2. Theory 
 
2.1 Effective pair potential 
 
We use the well-established second-order perturbation 

determination of the effective pair potential, uij(r), which 
can be written as 
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(2)  
 
in these expressions, Zi denotes the valences of the ions of 
the ith species. e(q) is the Hartree dielectric function and 
G(q) local field correction. Here we employ the local 
density approximation (LDA) version of G(q) the 
correlation energy of VWN [15]. The wi(q) denotes 
pseudopotential form factor described by Fiolhais et al.   
[4-5] as 
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where n is number density and Ri, ai, bi and Ai denote the 
parameters of the potential tabulated by the authors 
(individual values are used). 

 
2.2 Partial pair distribution functions and partial  

structure factors 
 
With the effective pair potential known, total and 

direct correlations functions hij(r) and cij(r) can be 
determined from the solution of the Ornstein-Zernike 
equation given by  
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which hij(r)=gij(r)-1 and gij(r) is the pair distribution 
function, n is the number density of the system and cl is 
the concentration of lth component. To solve the Ornstein-
Zernike integral equation, one needs a closure between 
hij(r) and cij(r). In our case we use Rogers-Young [14] 
closure given by 
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where Tk1 B=b , kB and T are the Boltzmann constant 

and temperature, respectively. In Eq. (5) f(r,a) is the 
mixing function given by 
 
                                          )rexp(1),r(f a--=a          (7)
  
where a parameter is determined by the relation suggested 
by Lai and coworkers [16]. After the calculation pair 
distribution function, we computed the Ashcroft-
Langreth’s partial structure factors [17] by 
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where ci is the concentration of the ith components. 

 
2.3 Electrical resistivity of liquid metals and alloys 
 
The well known Ziman formula [1] for the resistivity 

of a liquid metal is  
 

        dqqkqwqSq
knZe

m
f

Fel

)2()()(
4

3 2

0

3

632

2

-q
p

=r ò
¥

h
       (9) 

 
where S(q) is the static structure factor, w(q) is the 
screened ion pseudopotential, nel is the conduction electron 
density and it is related to Fermi wave vector kF by 

31
el

2
F )n3(k p= , e is the electron charge, m is the electron 

mass and, h is planck constant. The unit step function q is 
defined as  
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The extension to a liquid metal binary alloy is done by 

Faber-Ziman [2] as 
 

[ ]

[ ] ])2())()()()(2

)2()()()()([

4
3

0

213

0

223

632

2

dqqkqSqwqwccq

dqqkqSqwcqSqwcq

knZe
m

fijjiji

fjjjjiiii

Fel

-+

-+

´=

ò

ò
¥

¥

q

q

pr
h

(10) 

 
The finite mean free path corresponds to a finite 

uncertainty in the electron momentum. Thus the Fermi 
surface is not perfectly sharp but it is blurred. Some 
attempts have been made to take into account this blurring. 
Ferraz- March approach [3] yields in place of Eq.(6) 
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where 
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The mean free path l can be determined self 

consistently. The first step in the self consistency loop is to 
calculate r using with l =¥. A new “l” is then calculated 
from Drude relation as 
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lne

kF
L 2

h
=r                                    (13) 

 
the iterations are continued till rL converges. The 
extension of the Ferraz-March expression to binary alloys 
is straightforward with q replaced by G(q,kF,l) in Eq. 8 
[18]. 
 
 

3. Results and discussion 
 

In Fig. 1 we display the partial pair distribution 
functions and in Fig. 2 Ashcroft-Langreth partial structure 
factors for K0.5Rb0.5 and K0.5Cs0.5 alloys. As is seen from 
Fig. 1, first peak of gK-Rb(r) is in the middle between gK-

K(r) and gRb-Rb(r) first peaks. The peaks have similar 
height. First peak of gK-Cs(r) is also in the middle between 
gK-K(r) and gCs-Cs(r) first peaks. The highest peak is gK-K(r). 
These features are signaling a very weak tendency towards 
phase separation. 
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Fig. 1. Partial pair distribution functions and ashcroft-
langreth partial structure factors (a) for k0.5rb0.5 and for 

k0.5cs0.5 alloys. 
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Fig. 2. Ashcroft-langreth partial structure factors (a) for 

k0.5rb0.5 and (b) for k0.5cs0.5 alloys. 
 

We have calculated electrical resistivity for each 
system studied in this work using Eqs. (6-11). Calculated 
values of electrical resistivity are summarized in Table 1 
together with available experimental data [19-25]. 

In the cases of K-Cs alloys, the results of electrical 
resistivity calculated from both formulas are similar to 
each other. In the cases of K, Rb and Cs the resistivities 
calculated using the expression based on Ziman formula 
by Ferraz-March are greater than the results from Ziman 
formula and they are in good agreement with experimental 
data.  
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Table 1. The calculated values of electrical resistivity for 
liquid k, rb and cs liquid metals and k0.5rb0.5 and k0.5cs0.5 
alloys together with available experimental data [19-23 

]at 378 k. 
 

 rZiman 

(mWcm) 
rFerraz-March 

(mWcm) 
rexp 

(mWcm) 
K 13.6 14.72 15.6 (130 oC) 
Rb 18.6 24.3 33.0 (160 oC) 
Cs 20.7 30.4 45.0 
K 15.3 14.7  
K0.5Rb0.5 20.8 20.1  
Rb 21.4 20.8  
K 15.2 15.5 15.0 
K0.5Cs0.5 31.3 32.2 56.5 
Cs 24.6 26.0 44.6 

 
 
4. Conclusions 

 
We investigated the electronic transport properties of 

liquid alkali metals and alloys using the modified Ziman 
formula (self consistent approach) and Ziman formula. To 
calculate the resistivity using both formulas, we computed 
the static structure factor and partial structure factor using 
the individual version of pseudopotential proposed by 
Fioalhais and coworkers with LDA screening with the 
correlation energy of VWN and Ornstein Zernike integral 
equation with Rogers-Young closure.  

We calculated the resistivities of liquid alkaline 
metals using Ziman and the modified Ziman formula and 
we compared our results with each other and the 
experimental data. Our integral equation for the resistivity 
of liquid alkaline metals and alloys shows that the 
electrical resistivities calculated using the modified Ziman 
formula provides better results than the Ziman’s formula 
by using Fiolhais pseudopotential and Rogers-Young 
closure. 

 
 
References 

 
  [1] J. M. Ziman, Phil. Mag. 6, 1013 (1961).  
  [2] T. E. Faber, J. M. Ziman, Phil. Mag. 11, 153 (1967). 
  [3] A. Ferraz, N. H. March, Phys. Chem. Liq. 8, 271 

(1979). 
 
 
 
 
 
 
 
 
 
 
 
   
   
 

  [4] C. Fiolhais, J. P. Perdew, S. Q. Armster, J. M.    
         McLaren, M. Brajczewska, Phys. Rev. B 51,   
         14001(1995) 
  [5] C. Fiolhais, J. P. Perdew, S. Q. Armster, J. M.  
         McLaren, M. Brajczewska, Phys. Rev. B 53, 13193  
          (1996).  
  [6] E. M. Tammar, J. F. Wax, N. Jakse, J. L. Bretonnet, J.  
         Non-Cryst. Solids 250-252, 24 (1999). 
  [7] J. F. Wax, R. Albaki, J. L. Bretonnet, Phys. Rev. B  
        62, 14818 (2000). 
  [8] S. Ş. Dalgıç, S. Dalgıç, G. Tezgör, Phys. Chem. Liq.  
        40, 539 (2002). 
  [9] S. Ş. Dalgıç, S. Dalgıç, M. Celtek, S. Şengül, J.  
        Optoelecton. Adv. Mater. 5, 1271 (2003).  
[10] H. Kes, S. Ş. Dalgıç, S. Dalgıç, G. Tezgör, J.  
        Optoelecton. Adv. Mater. 5, 1281 (2003). 
[11] J. F. Wax, N. Jakse, I. Charpentier, Physica B 327,  
        154 (2003).  
[12] Ş. Korkmaz, S. D. Korkmaz, Comp. Mat. Sci. 37, 618  
        (2006).  
[13] S. D. Korkmaz, Ş. Korkmaz, Modelling Simul. Mater.  
        Sci. Eng. 15, 285 (2007). 
[14] F. J. Rogers, D. A. Young, Phys. Rev. A 30, 999  
        (1984)  
[15] S. H. Vosko, L Wilk, M. Nusair, Can. J. Phys. 58,  
         (1980). 
[16] S. K.Lai, W. Li, M. P. Tosi, Phys. Rev. A 42, 7289  
        (1990). 
[17] N. W. Ashcroft, D. C. Langreth, Phys. Rev. 155, 685  
        (1967). 
[18] T.  M. A. Khajil, M. Tomak, Phys. Stat. Sol. (b) 134,  
         321 (1986). 
[19] W. Geertsma, D. Gonzalez, L. H. Gonzalez, Braz. J.  
        Phys. 33, 406 (2003). 
[20] T. E. Faber, Theory of liquid metals, Cambridge  
        University Press, Cambridge, 326, 1972. 
[21] H. Endo, The Philosophical Magazine 8, 1403 (1963). 
[22] N. W. Ashcroft, J. Lekner, Phys. Rev. 145, 83 (1966).  
[23] W. F. Calaway, J. Less-Common Met. 86, 305  
        (1982).  
[24] J. G. Cook, Can. J. Phys. 60, 1759 (1982). 
[25] J. Hennephof, W. Van der Lugt, G. W. Wright, T.  
        Marien, Physica 61, 146 (1972).  
 
_____________ 
*Corresponding author: sduysal@ogu.edu.tr 


